Button to scroll to the top of the page.
SULLIVAN, CHRISTOPHER S

Christopher S Sullivan

Associate Professor
Molecular Biosciences


Our lab seeks to understand how viruses interact with the host non-coding RNA machineries to replicate, induce tumors, and cause pathogenesi

chris_sullivan@austin.utexas.edu

Phone: 512-471-4648

Office Location
NMS 3.218

Postal Address
The University of Texas at Austin
NEURAL MOLECULEAR SCIENCE
2506 SPEEDWAY, Stop A5000
AUSTIN, TX 78712-1191

Laboratory Focus:

The discovery of RNA interference (RNAi) and small regulatory RNAs such as siRNAs and miRNAs, has dramatically changed our understanding of the regulation of gene expression. Consequently, RNAi has generated much excitement due to its regulatory and therapeutic potential. Our research focuses on understanding the role of non-coding RNA in virus infection including interaction of viruses with the RNAi machinery in mammalian cells. We have shown that members of different tumor virus families (including Polyomaviridae, Herpesviridae, and Retroviridae) encode microRNAs; likely to aid in their own replication and to promote infectivity. Members of the Polyoma virus family induce tumors in model organisms and at least one member (MCV) is associated with human tumors. Kaposi's Sarcoma associated Herpes Virus (KSHV) promotes highly vascularized skin lesions and rare B cell lymphomas, predominantly in immunosuppresed AIDS patients. Our goals are several-fold: (1) to understand the functions of viral and host encoded non-coding RNAs and how they contribute to viral lifecycle, pathogenesis and tumorigenesis, (2) to identify novel interactions of mammalian viruses with the host RNAi machinery, (3) to uncover new mechanisms of gene regulation utilized by tumor viruses and the host in response to infection, and (4) to use viruses as "molecular divining rods" to probe for new classes of host defense pathways.

  1. R. P. Kincaid, Lam, V.L., Chirayil, R.P., Randall, G., and C. S. Sullivan*.2018. The RNA triphosphatase DUSP11 enables XRN-mediated restriction of hepatitis C virus. PNAS, in press July 2018. 1
  1. R. Chirayil,Kincaid, R.P., Dahlke, C., Kuny, C.V., Dalken, N., Spohn, M., B. Lawson, B., Grundhoff* A.T., andC. S. Sullivan*. 2018. Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathogens, in press July 2018. 1Highlighted by Virology Research Services: “Papilloma virus won’t give up its weapons easily”
  1. J. M. Burke, Bass, C. R., Kincaid, R.P. Ulug, E.T., and C. S. Sullivan*. 2018. Murine polyomavirus microRNAs promote viruria during the acute phase of infection. Deposited in Bioarchives, published in J Virol, in press June 2018. 1 
  1. J. M. Burke and C. S. Sullivan*. 2017. DUSP11- an RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells. RNA Biol. ePub March 2017. 1
  1. J. M. Burke, R. P. Kincaid, R. M. Nottingham, Alan M. Lambowitz, and C. S. Sullivan*. 2016. DUSP11 activity on tri-phosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs andregulates steady state levels of cellular non-coding RNAs. Genes & Development.30(18): 2076-92. 1
  1. C. S. Sullivan. 2015. Viral Virtuosos: New understanding of noncoding RNAs may solve a long-standing puzzle about how viruses orchestrate lifelong infections. The Scientist.ePub Feb 1. 2
  1. C. J. Chen, J. M. Burke, R. P. Kincaid, K. D. Azarm, N. Mireles, J. S. Butel, and C. S. Sullivan*. 2014. Naturally arising strains of polyomaviruses with severely attenuated microRNA expression.J. Virol, ePub Aug 20. 1
  1. J. M.Burke, Kelenis, D. P., Kincaid, R. P., and C. S. Sullivan*. 2014. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA. RNA.20(7): 1068-77. 1
  1. R. P. Kincaid, Y. Chen, J. E. Cox, A. Rethwilm, and C. S. Sullivan*. 2014. Non-canonical miRNA biogenesis gives rise to retroviral mimics of lymphoproliferative and immunosuppressive host miRNAs. MBio. 5(2): e00074. 1
  1. J. M. Pare, and C. S. Sullivan. 2014. Distinct Antiviral Responses in Pluripotent versus Differentiated Cells. PLoS Pathogens. 10(2): e1003865R.1, 2
  1. P. Kincaid, Burke, J. M., DeVillers, E. M., and C. S. Sullivan*. 2013. A human Torque Teno Virus encodes a microRNA that inhibits interferon signaling. PLoS Pathogens. 9(12): e1003818.S. 1
  1. G. J. Seo, Kincaid,R. P., Phanaksri,T., Burke,J. M., Cox,J., Pare,J. M, Hsiang,T. Y., KrugR. M., and C. S. Sullivan*. 2013.Reciprocal regulation of intracellular antiviral signaling and RNAi in mammalian cells.Cell Host Microbe, 14(4): 435-45. Covered in a preview article in the same issue of CHM, highlighted in Nature and Nature Reviews Microbiology, included in the Cell Host Microbe "Best of 2013" reprint collection. 1
  1. C. J. Chen, Cox, J. E., Kincaid, R. P., Martinez, A. and C. S. Sullivan*. 2013. Divergent MicroRNA Targetomes of Closely Related Circulating Strains of a Polyomavirus. J. Virol87(20):11135-47Selected by the Editors for a Spotlight as an "article of significant interest". Article selected by “Faculty of 1000”. 1
  1. R. P. Kincaid, Burke, J. M., and C. S. Sullivan*. 2012. RNA virus microRNA that mimics a B-cell OncomiR. PNAS, 109(8): 3077-82. Covered by a commentary article in the same issue of PNAS. Article selected by “Faculty of 1000”. Also favorably covered on the Microbeworld, Small Things Considered and MicrobiologyBytes blogs. 1
  1. Y. T. Lin and C. S. Sullivan*. 2011. Expanding the Role of Drosha to the Regulation of Viral Gene Expression. PNAS,108(27): 11229-341

2005.C. S. Sullivan, Grundhoff A. T., Tevethia S., Pipas J. M., Ganem D. 2005. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature.435: 682-6. Article selected by “Faculty of 1000”. 1